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(57) ABSTRACT 

This invention provides a method for accelerating multipli 
cation of an elliptic curve point Q(x,y) by a scalar k, the 
method comprising the steps of selecting an elliptic curve 
over a finite field Fq where q is a prime power such that there 
exists an endomorphism I, where (Q)=w.Q for all points 
Q(x,y) on the elliptic curve: and using Smaller representa 
tions k, of the scalark in combination with the mapping I 
to compute the scalar multiple of the elliptic curve point Q. 
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METHOD FOR ACCELERATING 
CRYPTOGRAPHC OPERATIONS ON 

ELLIPTC CURVES 

This application is a continuation of International Appli 
cation No. PCT/CA99/01222, filed on Dec. 23, 1999, and 
claims the priority of Canadian Patent Application No. 
2,257,008, filed on Dec. 24, 1998, the content of all of which 
is incorporated herein by reference. 

This invention relates to a method for performing com 
putations in cryptographic systems utilizing elliptic curves. 

BACKGROUND OF THE INVENTION 

A public-key data communication system may be used to 
transfer information between a pair of correspondents. At 
least part of the information exchanged is enciphered by a 
predetermined mathematical operation by the sender and the 
recipient may perform a complementary mathematical 
operation to decipher the information. 

Each correspondent has a private key and a public key that 
is mathematically related to the private key. The relationship 
is such that it is not feasible to determine the private key 
from knowledge of the public key. The keys are used in the 
transfer of data, either to encrypt data that is to be transferred 
or to attach a signature to allow verification of the authen 
ticity of the data. 

For encryption, one correspondent uses the public key of 
the recipient to encrypt the message and sends it to the 
recipient The recipient then uses her private key to decipher 
the message. 
A common key may also be generated by combining one 

parties public key with the other parties private key. It is 
usual in Such cases to generate new private and correspond 
ing public keys for each communication session, usually 
referred to as session keys or ephemeral keys, to avoid the 
long-term keys of the parties being compromised. 
The exchange of messages and generation of the public 

keys may therefore involve significant computation involv 
ing exponentiation when the cryptographic system utilizes in 
Z*p, the finite field of integers mod p where p is a prime or 
the analogous operation of point multiplication when the 
system utilizes an elliptic curve. In an elliptic curve system, 
an ephemeral key pair is obtained by generating a secret 
integer, k and performing a point multiplication in the seed 
point Q to provide the ephemeral public key kQ. Similarly, 
the generation of a common ephemeral session key will 
require multiplication of a public key kQ, which is a point 
on the curve, with a secret integerk, of the other correspon 
dent so that point multiplication is again required. 
A similar procedure is used to sign a message except that 

the sender applies his private key to the message. This 
permits any recipient to recover and Verify the message 
using the senders public key. 

Various protocols exist for implementing Such a scheme 
and some have been widely used. In each case, however, the 
sender is required to perform a computation to sign the 
information to be transferred and the receiver is required to 
perform a computation to verify the signed information. 

In a typical implementation a signature component S has 
the form: 

where; in an elliptic curve crypto system, 
P is a point on the underlying curve which is a predefined 

parameter of the system; 
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2 
k is a random integer selected as a short term private or 

session key: 
R=kP is the corresponding short term public key: 
a is the long term private key of the sender, 
Q-aP is the senders corresponding public key: 
e is a secure hash, such as the SHA-1 hash function, of a 

message m and the short term public key R; and 
n is the order of the curve. 
The sender sends to the recipient a message including m, 

s, and R and the signature is verified by computing the value 
R'=(sP-eO) which should correspond to R. If the computed 
values correspond then the signature is verified. 

In order to perform the verification it is necessary to 
compute the point multiplications to obtain SP and eCR, each 
of which is computationally complex. Where the recipient 
has adequate computing, power this does not present a 
particular problem but where the recipient has limited com 
puting power, Such as in a secure token or a “Smart card' 
application, the computations may introduce delays in the 
verification process. 
Key generation and signature protocols may therefore be 

computationally intensive. As cryptography becomes more 
widely used there is an increasing demand to implement 
cryptographic systems that are faster and that use limited 
computing power, Such as may be found on a Smart card or 
wireless device. 

Elliptic curve cryptography (ECC) provides a solution to 
the computation issue. ECC permits reductions in key and 
certificate size that translates to Smaller memory require 
ments, and significant cost savings. ECC can not only 
significantly reduce the cost, but also accelerate the deploy 
ment of Smart cards in next-generation applications. Addi 
tionally, although the ECC algorithm allows for a reduction 
in key size, the same level of security as other algorithms 
with larger keys is maintained. 

However, there is still a need to perform faster calcula 
tions on the keys so as to speed up the information transfer 
while maintaining a low cost of production of cryptographic 
devices. 
Computing multiples of a point on an elliptic curve is one 

of the most frequent computations performed in elliptic 
curve cryptography. One method of speeding up Such com 
putations is to use tables of precomputed multiples of a 
point. This technique is more useful when a point is known 
beforehand. However, there are cases when multiples of 
previously unknown points are required (for example, in 
ECDSA verification). Thus there is a need for a system and 
method for facilitating point multiplications. 

SUMMARY OF THE INVENTION 

In general terms, the present invention represents the 
Scalark as a combination of components k, and an integer w 
derived from an endomorphism in the underlying curve. 
The method is based on the observation that, given an 

elliptic curve (EC) having complex multiplication mapping 
over a finite field, there is an W, which is the solution to a 
quadratic, for which the complex multiplication mapping is 
equivalent to multiplying a point Q by W. It will often be less 
computationally expensive to compute WO via the complex 
multiplication map, compared to treating was a integer and 
performing the EC multiplication. In practice, point multi 
plication by other scalars (not just W) is required. It is also 
shown how the multiplication mapping may be used to 
compute other multiples of the point. 
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In accordance with this invention there is provided a 
method for accelerating multiplication of an elliptic curve 
point Q(x,y) by a scalar k, the method comprising the steps 
of: 
selecting an elliptic curve over a finite field F such that there 

exists an endomorphism up, where p(Q)—w Q for all points 
Q(x,y) on the elliptic curve; and 

using Smaller representation k, of the scalark in combination 
with the mapping up to compute the Scalar multiple of the 
elliptic curve point Q. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features of the preferred embodiments of 
the invention will become more apparent in the following 
detailed description in which reference is made to the 
appended drawings wherein: 

FIG. 1 is a schematic diagram of a communication 
system; 

FIG. 2 is a flow chart showing the steps of implementing 
a first embodiment of the present invention. 

FIG. 3 is a flow chart showing the steps of providing 
parameters required to implement the method of FIG. 2. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

For convenience in the following description, like numer 
als refer to like structures in the drawings. Referring to FIG. 
1, a data communication system 10 includes a pair of 
correspondents, designated as a sender 12, and a recipient 
14, connected by a communication channel 16. Each of the 
correspondents 12.14 includes a cryptographic processor 
18.20 respectively that may process digital information and 
prepare it for transmission through the channel 16 as will be 
described below. Each of the correspondents 12.14 also 
includes a computational unit 19.21 respectively to perform 
mathematical computations related to the cryptographic 
processors 18.20. The processors 18.20 may be embodied in 
an integrated circuit incorporated in the processor or may be 
implemented as instructions encoded on a data carrier to 
implement a predetermined protocol in conjunction with a 
general purpose processor. For the purpose of illustration it 
will be assumed that the correspondent 12 is in the form of 
a smart card having a dedicated processor 18 with relatively 
limited computing power. The processor 20 may be a central 
server communicating with the card by channel 16 and 
channel 16 may be a wireless communication channel if 
preferred. 
The cryptographic processors 18 implement an elliptic 

curve cryptographic system, of ECC, and one of the func 
tions of the cryptographic processor 18 is to perform point 
multiplications of the form k-Q, where k is an integer and Q 
a point on the underlying elliptic curve, so that they may be 
used as a key pair k, kQ in a cryptographic scheme. As noted 
above, cryptographic computations such as the multiplica 
tion of an elliptic curve point by a scalar value are compu 
tationally expensive. 
A method for accelerating Scalar multiplication of an 

elliptic curve point Q(x,y) is shown in FIG. 2 and indicated 
generally by the numeral 50. The subject algorithm increases 
the speed at which the processors 12 can for example sign 
and verify messages for specific classes of elliptic curves. 
The method is based on the observation that given the 
general equation for an elliptic curve E: 

(1) 
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4 
over a finite field, exemplified as F(q is a prime power) and 
when there exists an endomorphism up, where (Q)=w-Q for 
all points Q(x,y) on the elliptic curve, then multiplication of 
the point Q by an integerk may be accelerated by utilizing 
combinations of Smaller representations k, of k in combina 
tion with the mapping up. The mapping up also allows 
precomputation of group elements and combinations 
thereof, which may be used in Subsequent calculation of kO. 

Referring now to FIG. 2, a flow chart of a general 
embodiment for accelerating point multiplication on an 
elliptic curve, is shown by numeral 50. The system param 
eters are first selected. As an initial step an underlying 
elliptic curve E is selected to have certain characteristics. In 
a first embodiment of the invention the generalized elliptic 
curve (1) may be expressed in the following form: 

E: y’=x+b mod p; where p is a prime. (2) 

Firstly, the modulus p can be determined such that there 
is a number. Y where yeF. (F is the field of size p consisting 
of all integers mod p), and Y=1 mod p (a cube root of unity). 
If for example p=7, then Y=2, since 2 mod 7=1. Such a y 
does not necessarily exist for all p, and therefore this must 
be taken into consideration when choosing the value of p. 
Typically, the chosen p should be at least 160 bits in length 
for adequate cryptographic strength. 

After the curve E has been selected, a mapping function 
up is determined. The mapping function : (x, y)->(YX, y), 
simply maps one set of points on the curve to another set of 
points on the curve. There exists an integer w such that 
up (Q)—w-Q for all points Q(x,y) of interest on the elliptic 
curve, E. This integer may be found by noting that =1 
mod n, where n is the number of points on the elliptic curve 
E over F, i.e. the number of points on E(F). There may exist 
more than one solution for in w=1 mod n, but only one of 
those solutions will satisfy the mapping function up. It is 
important to note that since y mod p=1, both Q and p(Q) 
satisfy the equation for E. Therefore, instead of having to 
perform lengthy calculations to determine the results of 
multiplication by , it can be done very efficiently using the 
results of the mapping function so that multiplication by W. 
can be done very efficiently. 
A seed point Q is selected and the system parameters E. 

p, Q, W, up (Q), and Y are stored in the card 12, as indicated 
at 52, at manufacture time for use by the cryptographic 
processor 18. To implement a cryptographic procedure Such 
as encryption, key agreement or signature it is necessary to 
select an integerk for use as an ephemeral private key k and 
generate a corresponding public key kQ. 
The value of k may be expressed as: 

k=(ko-ku) mod in (3) 

where n is the number of points on E(F) and ko and k are 
integers. The point k Q then becomes: 

k:g)=(kog--ikiP) mod in (4) 

For some cryptographic operations the value of k may be 
chosen at random and in these cases, rather than select k it 
is possible to select values for ko and k at random, having 
a length of log(n)/2 not including sign bits, (i.e. the length 
of the ks are chosen to be at least one half the length k) and 
then calculate the value for k using equation (3). Having 
selected the values of kok as indicated a 54 in FIG. 2, the 
right side of equation (4) can be calculated quickly using an 
algorithm analogous to the “Simultaneous Multiple Expo 
nentiation” as described in the “Handbook of Applied Cryp 
tography'(HAC) by Menezes et. al.(Algorithm 14.88) and 
indicated at 56. For convenience the algorithm is reproduced 
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below. It may be noted that in an additive group exponen 
tiation is analogous to addition, thus replacing the multipli 
cation in the algorithm with addition, yields the following: 

Algorithm 1 Simultaneous Multiple Addition 

INPUT: group 
elements go, g1, . . . . g .1 and non negative t-bit integers eo, e1, . . . 
OUTPUT: goeo + ge1 + . . . + ge. 

step 1. Precomputation. For i from 0 to (2 - 1): 
G - Yo' g; 

where i = (i-1 . . . iio)2 
step2. A s- O 
step3. For i from 1 to t do the following: 
A - A + A, A - A + G, 

step4. Return (A) Where A = goeo + gue 1 + ... + g-1e-1 

C1-1. 

Applying this algorithm to equation (4) it can be seen that 
there are two group elements, gog namely Q and Q, so 
that 1–2 and two integers eo, e namely kok. The algorithm 
permits precomputation of Some of the values and initially 
G, is precomputed. The results of precomputation of G, with 
l=2 is shown in table 1. 

TABLE 1. 

i O 1 2 3 

G; O So 91 90 - 9 

After performing a point addition to construct the point: 
Q+(Q). It is possible to fill in table 1 with the computed 
elements to yield table 2. These elements may be pre 
computed and stored in memory as shown at step 58 in FIG. 
2. 

TABLE 2 

i O 1 2 3 

G; O Q (Q) Q+ (Q) 

Before step of the algorithm can be performed, G, has to be 
determined and accordingly I through I, have to be found as 
indicated at 60. A notional matrix or combing table may be 
constructed using the binary representation of k. If, for 
example, koi-30 and k=10, thent has the value five since the 
maximum number of bits in the binary representation of ko 
through k is five and the notional matrix constructed from 
their binary representation is shown in Table 3. I, is deter 
mined by the number represented in the i' column where the 
first row contains the least significant bit, the second row 
contains the next significant bit, etc. Therefore it can be seen 
from table 3 that I =I=(11)=3, I=(01)=1, I-3, and Is 0. 

TABLE 3 

i 1 2 3 4 5 

ko 1 1 1 1 O 
k O 1 1 O 
I 1 3 1 3 O 

All the components needed to complete the algorithm are 
available and the iteration of step three is performed as 
shown at 62. 

Initially As-O and i is set to 1. 
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6 
I, I, which from table 3 is equal to 1. Gi is therefore G, 

which from table 2 is Q. The value of A from the iteration 
for I= 1 is therefore O+Q-Q. 

For the next iteration where i=2 the initial value of A is Q 
so A-Q+Q–2O I, I, 3 from table 3. G, therefore equates 
to G from table 2 which is Q+(Q). 
A+G, therefore is computed as 2C+Q+pQ-3Q+Q. 
The iterations continue for each value of i set out in table 

4 until after the 5" iteration the value for koq=k, Q, i.e. kO 
is computed. 

TABLE 4 

i A. 

Each iteration requires a point doubling (A+A) and a 
point addition (A+G) although in some cases the value of 
G. may be O that will reduce the computation. 
Thus it may be seen that this method will require a 

number of point doubles equal to max (log2(k), and almost 
as many point additions. The number of point additions can 
be reduced using windowing (Alg. 14.85 HAC) and expo 
nent recoding techniques. Since the value of i and G can be 
precomputed, the point additions are easily performed by 
retrieving the appropriate precomputed element G, from 
table 2. Once kP has been computed, it may be used as the 
correspondents 12 ephemeral public key in encrypting or 
signing transmissions over the channel 16. 
To Summarize, for cryptographic operations like encryp 

tion and Diffie-Hellman, signature, an integer k is required 
with a corresponding public key kQ, computed. The values 
ko and k are chosen at random, each having a length one 
half the length of n and the term koQ-kWQ generated using 
a suitable algorithm. When the k's are chosen in this way, the 
method seems to be as secure as the random generation of 
k itself. Of course it is possible to choose the k,s to have 
fewer bits in order to improve efficiency. 

In the above technique, the method of writing k ko-kW 
in conjunction with simultaneous combing achieves a speed 
up of the simultaneous multiple addition algorithm. The 
technique of writing k-k-kW may also be used with the 
Scalar multiplication techniques to advantage, namely with 
winding, combing, etc. 

For some mappings up, it is also possible to use more than 
two sub ks. It is possible for some p’s to write k-k-ku 
ka allowing the value of k to be computed by applying the 
simultaneous multiple addition algorithm. 

In a second embodiment of the invention a different form 
of the generalized elliptic curve equation (1) is used, 
namely: 

Once again, p will be a prime number having at least 160 
bits. For this type of curve, the properties required for y are 
different. It is now required to find a value such that y=- 
mod p. A change in the property of Y requires a different 
mapping function up' to be used. In this embodiment the 
mapping takes the form p': (x,y)->(-X, Yy). If (x,y) is on the 
curve, then p'(x,y) is also on the curve. In this case "=1 
mod n (n is still the number of points on E(F)), and 
therefore w can be calculated. The mapping p'(Q)—w-Q is 
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performed as before and once again multiplication by w can 
be done very efficiently for this curve. The equation fork in 
this embodiment is the same as in the first embodiment and 
is represented by: 

k=(ko-ku) mod in (6) 

This equation is the same as in the previous embodiment, 
having only two group elements. Thus using the group 
elements Q and Q+'(Q) in the algorithm 1, the point k-Q 
may be calculated. This computation will require a number 
of point doubles equal to max log2(k), and a similar 
number of point additions. As described earlier the number 
of point additions can be reduced using windowing and 
exponent recoding techniques. 

This method applies to other elliptic curves, so long as 
there exists an efficiently computable endomorphism, p. 

The above embodiments assume that k can be chosen at 
random and therefore ko and k can be selected instead and 
determine k. For cryptographic protocols, where it is not 
possible to choose k, it is first necessary to find ko, k of the 
desired “short form from the given value of k such that 
k (k+k) mod n. In some cases, more than two k’s can be 
used to advantage. 
As may be seen in the embodiments described above 

when a point is known beforehand, tables can be built to 
speed multiplication. However, there are cases when mul 
tiples of previously unknown points are required (for 
example, this can occur in ECDSA verification) and it is then 
necessary to take the value of k as provided and then 
determine Suitable representations for k. 

Thus in a third embodiment, system parameters and a 
value k is provided, the point Q, the required multiple k, and 
the complex multiplication multiple w are known. It is 
necessary to determine the “short” k,’s from the value for k, 
which is predetermined. A method for doing this described 
as follows and illustrated in the flow chart of FIG. 3. As a 
pre-computation (not requiring k) we compute two relations: 

ao-bo-O mod in 

a+b=0 mod in 

such that a, and b, are numbers Smaller than n. It is preferable 
that a, and b, are as Small as possible, however, the present 
method has advantages even when a, and b, are not minimal. 
The pair, a, and b, where a, and b, are both Small, can be 
viewed as a vector, u, with a small Euclidean length. Typi 
cally the method described below produces ko and k having 
representations one half the size of the original k. 

In the present embodiment, kQ can be computed effi 
ciently by utilizing precomputed, short vector representa 
tions to obtain an expression of the form: 

This is accomplished by using precomputed vectors to 
derive fractions f and f that do not require knowledge of k. 
A vector Z is generated from the combination of fractions f 
and f and k. The vector Z is used to calculate a second vector 
v' where v'-(vo'V') and the value of kO calculated as 

vo'Q+v'Q (8) 

The method of achieving this solution is described below in 
greater detail. 

To produce Small a, and b, it is possible to make use of 
the L-lattice basis reduction algorithm (HAC p. 118), which 
would directly result in short basis vectors. However, in this 
preferred embodiment the simple extended Euclidean algo 
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8 
rithm is employed on the pair (n, w). The extended Euclidean 
algorithm on (n, w) produces linear combinations c.n+ 
dwr, where the representation of r, (e.g. bit-length) 
decreases and the representation of c, and d, increases with 
1. 

The two smallest values of (d, r) resulting from using 
the extended Euclidean algorithm are saved. The size of 
these vectors are measured with the squared Euclidean norm 
I(d, r)-d+r°. The terms in these minimal relations are 
denoted do ?o and d, r. and will typically occur in the 
middle of the algorithm. Even if the minimal relations are 
not retained, Suboptimal relations may still give the method 
an advantage in the calculation of point multiples. 
The values of a, and b, are constructed by defining a -r, 

bo do a bi-do all of which may be precomputed. The next 
task is to find a small representation for the multiple k. 

Given the computation of a bo and a, b, it is possible 
to designate the Vectors uo ul, where uo (ao, bo) and u-(a. 
b). These vectors satisfy a--bu-0 (mod n). The multipli 
cation of the group elements Q by the vector V-(vo, V) is 
defined as (vo-v).Q. Since a-b=0 (mod n), uR-u R=0 
for any group element R. Hence for any integers Zo and Z. 
VR (v-Zouc-Zu)R for any group element R. 

Integers Zo and Z may be chosen such that the vector 
v'-v-Zuo-Zu has components that are as small as possible. 
Again, this method will have an advantage if the compo 
nents of v are Small, but not necessarily minimally so. 
The appropriate Z and Z are calculated by converting the 

basis of V into the basis {uo, u}. The conversion between 
basis involves matrix multiplication. To convert the vector 
V-(vo. V) from the Kuo, u} basis to the standard orthonor 
mal basis {(1,0), (0,1)}, 

(0 

d 

To convert in the other direction, from the standard orthonor 
mal basis {(1,0).(0,1)} to the (uo, u) basis, the multiplica 
tion is simply by the inverse of M, 

1 
V(a) = V (1.0)(0,1)} in verse(M) = V (1.0)(0,1)} (uou) v{(1,0).(0,1)} (1,0,0,1) at lab, - a 

-bo 
(0 

Since the vector v=(k, 0) has a Zero component, the 
bottom row of inverse(M) is not required, and therefore to 
convert to the Kuo, u} basis only the fractions 

bo f = - O aob - albo 
= -- and f = aob - albo and fi 

are needed. 
The fractions f and f may be precomputed to enough 

precision so that this operation may be effected only with 
multiplication. It should be noted that the computations 
leading to these fractions do not depend upon k, therefore 
they can be computed once when the elliptic curve is chosen 
as a system parameter, and do not need to be recalculated for 
each k. Similarly the vectors V, u and u may be precom 
puted and stored. 
Once a value of k is selected or determined the value of 

kQ may be computed by first calculating Z (Zo. Z), where 
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Z is defined as (Zo. Z)-(round(kf), round(kf)). Other 
vectors near to Z will also be useful, therefore rounding 
could be replaced with floor or ceiling functions or some 
other approximation. 
Once a suitable Z has been determined, an efficient 

equivalent to V (k,0) is calculated by v'(vo, V') V-Zou 
Zu. The phrase “efficient equivalen implies a vector v 
such that VP-VP and v'has small coefficients. The value kQ 
is then calculated as Vo'O+V WO. This value can be calcu 
lated using simultaneous point addition as described above, 
with enhanced efficiency obtained from the use of non 
adjacent form (NAF) recoding as described above and as 
described in H. A. C. 14.7 at page 627. Thus, even where k 
is predetermined, values of ko and k can be computed and 
used with the mapping function to obtain a value of kO and 
hus he key pair k, kQ. 

For the case where k is to be separated into 3 portions 
k-ko-k+k, small vectors can be obtained from L-row 
reducing 

ii.2 

tO 

ito 

A Small vector equivalent (three-dimensional row) can be 
obtained in a similar way to the two-dimensional case. 

O 1 - | 0 0 -in 

Using these methods to determine the value of k"Q greatly 
reduces the processing power required by the cryptographic 
processors 12. It also increases the speed at which these 
repetitive calculations can be done which, in turn, reduces 
the time to transfer information. 

It will be appreciated that once the scalar multiple k has 
been represented in terms of shortened components k k+ 
ku-ka+ . . . ku", other options for efficient elliptic 
curve scalar multiplication may be used in place of or in 
conjunction with the simultaneous multiple addition algo 
rithm. These options include windowing (fixed and sliding), 
combing, bit recoding and combinations of these techniques. 
One particularly beneficial technique permits tables built 

for one component of the multiplication, say ko to be reused 
for other components k, etc. This is accomplished by 
transforming the computed table elements by applying the 
mapping Y as required. 
As a further exemplification, an embodiment where k can 

be recast as k-ko-k, -k2), where k has m-bits and k, have 
roughly m/3 bits is described below. 
Once the components k, have been determined, they may 

be recoded from the binary representation to the signed 
binary representation having less non-zero bits. This recod 
ing can take the Non-Adjacent-Form (NAF), where every 1 
or-1 bit in the representation ifk, is non-adjacent to another 
non-Zero in the signed binary string. This recoding is 
described in H.A.C. 14.7 p. 627. 
Once each k, has been recoded, a table can be constructed 

to aid in computing k, P. 
A NAF windowing table precomputes certain short-bit 

length multiples of P. The width of the window determines 
the size of the table. As k, has been recorded to have no 
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10 
adjacent non Zeros, odd window widths are suitable. A 3-bit 
wide NAF window would contain 

The recoded k, values are built by concatenating these 
windows, and padding where necessary with Zeros (H.A.C., 
p. 616). 
The required number of additions can be reduced with use 

of this table, since it is necessary to add or subtract an EC 
point only for every window encountered instead of for 
every non Zero bit. 

Initially therefore this technique is applied to the compu 
tation of kP. 
The table built for the kP calculation can be applied to the 

kP calculation if the table elements are mapped with the up 
mapping using the operator Y. Similarly, k, P can be 
accelerated by using the table built for koP, but mapping the 
table elements with Y. 

In applying the sliding window technique to the compo 
nents, only one set of doublings need be performed. 
To illustrate this example of a preferred embodiment the 

following example will be used: 
If k=110110101101)2+1110101011012, 

then recoding 

k = 10 - 100 - 10 - 100 - 101 + 1000 - 10 - 10 - 10 - 101, 

A 3-bit window table on P is precomputed containing 1 P. 
10-1-P 101: P. This requires two EC additions, and two 
EC doublings. 

After this, kP can be calculated as 
kP=F10-100-10-100-101FP+/1000-10-10-10-1011 

P 

by adding/subtracting elements from the table. 
This can be done using an accumulator A as follows: 

As-O ;initialize 
A += p (1 P) ;consuming the top bit of ko 
A s- 2A :double A 
A s- 2A 
A s- 10 - 1) P ;consuming the top 3 bits of ko 
A s- 2A 
A -= 101 P ;consuming a 3 bit window of k" 
A s- 2A :double A 
A -= 101 P ;consuming 3 bits of k" 
A s- 2A 
A -= 101 P ;consuming 3 bits of k" 
A C-2A 
A -= 10 - 1) P ;consuming the last of ko 
A += P ;producing kP. 

In Summary, the previously described technique is as 
follows. Given an elliptic curve E and an endomorphism up, 
there corresponds an integer w such that Q=p(Q) for all 
points Qe E. Select an integer m and compute an equivalent 
number m of 'short basis vectors’b, b, ....b. Each Such 
basis vector corresponds to an integer, and each Such integer 
is divisible by the number of points n=#E(F") (i.e. the 
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number of points). Now, given an integer k, (0<k<n), we 
write k Xk, , where the k,’s are chosen to be "short”. This 
is done by finding the difference between a certain vector 
(which represents k) and a nearby vector in the lattice 
generated by b, b. . . . .b. 
The following embodiment explicitly describes an appli 

cation of the previously described technique (endomorphism 
and basis conversion and “Shamir's trick') to elliptic curves 
defined over composite fields. In particular, we describe an 
application to curves E(F") where p is an odd prime is 
described. The following embodiments exemplify tech 
niques for Such curves. 

This technique is described in the case where the map up 
is the Frobenius map p(x,y)=(x,y) and E (F") wherein 
A.BeFp. 

In this case, it is known that the Frobenius map satisfies 
the p-tup+p=0, where t-p+1-#E(F"). 

It follows that-to-hp=0 mod n and so '-t'+p =0 
mod n. 

Note that the vectors; 

(Am I... A2, Al A) 

b1 (0, 0, 0, ... 0, 1, -i, p) 
b2 ( 1, -i, p. O) 

(1,-i, p, 0, 0, ... ... , 0) 
(-t, p, 0, 0, ... . . 0, 1) 

bin (p, 0, 0, 0, ... 0, 1, -t) 

consist of m “short basis vectors of the vector space Q". It 
follows that to compute k Q on Such a curve we can proceed 
using the vectors bb . . . b, and the technique described 
previously. 

In the above embodiments it will be appreciated that k. Q 
can be obtained from p(kQ) is the mapping is more efficient 
than addition. 

Although the invention has been described with reference 
to certain specific embodiments, various modifications 
thereof will be apparent to those skilled in the art without 
departing from the spirit and scope of the invention as 
outlined in the claims appended hereto. 
We claim: 
1. A method for multiplying an elliptic curve point Q(x,y) 

by a scalark to provide a point kQ, the method comprising 
the steps of: 

a) selecting an elliptic curve of order n over a finite field 
F Such that there exists an endomorphism up where up 
(Q)= (Q) for all point Q (x,y) on the elliptic curve, and 
w is an integer, 

b) establishing a representation of said Scalar k as a 
combination of components k, and said integer W of the 
form 

ki = 2. kia 

mod n, 
c) combining said representation and said point Q to form 

a composite representation of a multiple of the form 
koQ+k(Q)+ . . . corresponding to kQ; and 

d) computing a value corresponding to said point kQ from 
said composite representation of kO. 
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12 
2. A method according to claim 1 wherein each of said 

components k, is shorter than said scalar k. 
3. A method according to claim 1 wherein said compo 

nents k are initially selected and Subsequently combined to 
provide said Scalark. 

4. A method according to claim 1 wherein said compo 
nents k, are selected at random. 

5. A method according to claim 4 wherein said represen 
tation is of the form kokw. 

6. A method according to claim 1 wherein said scalark has 
a predetermined value and said components ko and k are 
one half size of said scalar k. 

7. A method according to claim 3 wherein said value of 
said multiple kQ is calculated using simultaneous multiple 
addition. 

8. A method according to claim 7 wherein said simulta 
neous multiple addition includes precomputing a value G, 
representing a grouping of like elements, said value G, being 
used in said simultaneous multiple addition. 

9. A method according to claim 6 wherein said compo 
nents k, are obtained by obtaining short basis vectors (u, u,) 
of the field F, designating a vector V as (k,0), converting V 
from a standard, orthonormal basis to the (u, u,) basis, to 
obtain fractions ff representative of the vector V, applying 
said fractions to k to obtain a vector Z, calculating an 
efficient equivalent v' in the composite representation of kO. 

10. A method of generating in an elliptic curve crypto 
system a key pair having a integerk providing a private key 
and a public key kQ, where Q is a point on the curve, the 
method comprising the steps of 

a) selecting an elliptic curve over a finite filed F such that 
there exists an endomorphism where (Q) LLO for 
all points Q (x,y) on the elliptic curve, w is an integer, 

b) establishing a representation of said key k as a com 
bination of components k, and said integer W, of the 
form 

mod n where n is the number of points on the elliptic 
curve, 

c) combining said representation and said point Q to form 
a composite representation of a multiple of the form 
k+k (Q)+ . . . corresponding to the public key kQ; 
and 

d) computing a value corresponding to said public kQ 
from said composite representation of kO. 

11. A method according to claim 10 wherein each of said 
components: k, is shorter than said Scalark. 

12. A method according to claim 11 wherein said com 
ponents k, are initially selected and Subsequently combined 
to provide said scalark. 

13. A method according to claim 12 said components k, 
are selected at random. 

14. A method according to claim 13 wherein said repre 
sentation is of the form kokw. 

15. A method according to claim 10 wherein said scalark 
has a predetermined value and said componentsko and k are 
selected to be one half the size of said scalar k. 

16. A method according to claim 12 wherein said value of 
said multiple kQ is calculated using simultaneous multiple 
addition. 
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17. A method according to claim 16 wherein said simul 
taneous multiple addition includes precomputing a value G, 
representing a grouping of like elements, said value G, being 
used in said simultaneous multiple addition. 

18. A method according to claim 15 wherein said com 
ponents k, are obtained by obtaining short basis vectors (u, 

14 
u) of the field F, designating a vector V as (k0), converting 
V from a standard, orthonormal basis to the (u, u,) basis, to 
obtain fractions ff representative of the vector V, applying 
said fractions to k to obtain a vector Z, calculating an 
efficient equivalent v' in the composite representation of kO. 

k k k k k 
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