
A Protocol for Interledger Payments

Stefan Thomas & Evan Schwartz
{stefan,evan}@ripple.com

Abstract

We present a protocol for payments across payment sys-
tems. It enables secure transfers between ledgers and
allows anyone with accounts on two ledgers to cre-
ate a connection between them. Ledger-provided es-
crow removes the need to trust these connectors. Con-
nections can be composed to enable payments between
any ledgers, creating a global graph of liquidity or
Interledger.

Unlike previous approaches, this protocol requires no
global coordinating system or blockchain. Transfers
are escrowed in series from the sender to the recipient
and executed using one of two modes. In the Atomic
mode, transfers are coordinated using an ad-hoc group
of notaries selected by the participants. In the Univer-
sal mode, there is no external coordination. Instead,
bounded execution windows, participant incentives and
a “reverse” execution order enable secure payments be-
tween parties without shared trust in any system or insti-
tution.

1 Introduction

Sending money today within any single payment system
is relatively simple, fast and inexpensive. However, mov-
ing money between systems is cumbersome, slow and
costly, if it is possible at all.

Digital payment systems use ledgers to track accounts
and balances and to enable local transfers between their
users. Today, there are few connectors facilitating pay-
ments between these ledgers and there are high barriers
to entry for creating new connections. Connectors are
not standardized and they must be trusted not to steal the
sender’s money.

In this paper, we present a protocol for interledger pay-
ments that enables anyone with accounts on two ledgers
to create connections between them. It uses ledger-
provided escrow—conditional locking of funds—to al-
low secure payments through untrusted connectors.

Any ledger can integrate this protocol simply by enabling
escrowed transfers. Unlike previous approaches, our pro-
tocol does not rely on any global coordinating system or
ledger for processing payments—centralized [10] or de-
centralized [15, 17, 19].

Our protocol lowers the barriers to facilitating interledger
payments. Connectors compete to provide the best rates
and speed. The protocol can scale to handle unlimited
payment volume, simply by adding more connectors and
ledgers. Composing connectors into chains enables pay-
ments between any ledgers and give small or new pay-
ment systems the same network effects as the most es-
tablished systems. This can make every item of value
spendable anywhere—from currencies to commodities,
computing resources and social credit.

Our protocol provides:

• Secure payments through any connector using
ledger-provided escrow.

• The sender of a payment is guaranteed a crypto-
graphically signed receipt from the recipient, if the
payment succeeds, or else the return of their es-
crowed funds.

• Two modes of executing payments: In the Atomic
mode, transfers are coordinated by an ad-hoc group
of notaries selected by the participants to ensure
all transfers either execute or abort. The Univer-
sal mode instead uses bounded execution windows
and incentives to remove the need for any mutually
trusted system or institution.

The following sections describe our protocol in greater
depth. Section 2 introduces the core concepts of the
protocol, including the actors involved and the need for
ledger-provided escrow. Section 3 presents the Atomic
mode. Section 4 presents the Universal mode. Sequence
diagrams and the formal protocol specifications can be
found in the Appendix.

2 Interledger Payments

A ledger may be used to track anything of value—from
currency or stocks to physical goods and titles—and may
be centralized or decentralized [17]. As illustrated in
Figure 1, payments between accounts in the same sys-
tem are accomplished with a simple book transfer.

Figure 1: Book transfer

A connector is a system that facilitates interledger
payments by coordinating book transfers on multiple
ledgers. Connectors can also translate between different
protocols used by these ledgers. As illustrated in Figure
2, connector Chloe accepts a transfer into her account on
one ledger in exchange for a transfer out of her account
on another ledger.

Figure 2: Connector controls accounts on two ledgers

The problem with existing payment protocols is that the
sender must trust the connector to follow through on pay-
ing the intended recipient. Nothing technically prevents
connectors from losing or stealing money, so they must
be bound by reputation and legal contracts to complete

the payment correctly. This severely limits the set of in-
stitutions that can act as connectors, resulting in a highly
uncompetitive and disconnected global payment system.

Ledger-provided escrow guarantees the sender that their
funds will only be transferred to the connector once the
ledger receives proof that the recipient has been paid. Es-
crow also assures the connector that they will receive the
sender’s funds once they complete their end of the agree-
ment.

Figure 3: Funds are escrowed by the sender and connec-
tor on their respective ledgers

Figure 4: The transfers to the connector and recipient are
either executed or aborted together

The simple arrangement illustrated here can be extended
into arbitrarily long chains of connectors to facilitate
payments between any sender and any recipient. This
brings the small-world network effect (commonly known
as the “six degrees of separation”) [3, 21] to payments
and creates a global graph of liquidity or Interledger.

2.1 Byzantine and Rational Actors

A truly open protocol for payments cannot rely on highly
trusted actors for security. It must lower the barriers to
participation through built-in protections against poten-
tially faulty, self-interested, or malicious behavior by the
participants.

We use the Byzantine, Altruistic, Rational (BAR) model
introduced by [2] for categorizing participants. Byzan-

2

tine actors may deviate from the protocol for any reason,
ranging from technical failure to deliberate attempts to
harm other parties or simply impede the protocol. Altru-
istic actors follow the protocol exactly. Rational actors
are self-interested and will follow or deviate from the
protocol to maximize their short and long-term benefits.

We assume all actors in the payment are either Rational
or Byzantine. Protocols that rely on highly trusted actors
effectively assume all to be Altruistic—or bound by fac-
tors external to the protocol. Assuming the actors to be
self-interested or malicious requires the protocol to pro-
vide security even when participants are bound only by
the algorithm itself.

We assume that, as Rational actors, ledgers and connec-
tors may require some fee to incentivize their participa-
tion in a payment. These fees may be paid in the flow of
the payment, or out of band. In this paper, we will only
discuss the details of fees necessary to mitigate risks and
attacks specific to interledger payments.

While ledgers may be Byzantine, we do not attempt to
introduce fault-tolerance—protection against accidental
or malicious errors—for participants who hold accounts
with such a ledger. Ledgers themselves can be made
Byzantine fault-tolerant [15, 17, 19], and participants can
choose the ledgers with which they hold accounts. We
only seek to isolate participants who hold accounts on
non-faulty ledgers from risk.

We assume that connectors will agree to participate in
a payment only if they face negligible or manageable
risk for doing so, and that they will charge fees accord-
ingly. Connectors will only deliver money on a destina-
tion ledger if doing so benefits them directly.

Any of the participants in a payment may attempt to over-
load or defraud any of the other actors involved. Thus,
escrow is needed to make secure interledger payments.

2.2 Cryptographic Escrow

Ledger-provided escrow enables secure interledger pay-
ments by isolating each participant from the risks of fail-
ure or malicious behavior by others involved in the pay-
ment. It represents the financial equivalent of the states
in the Two-Phase Commit Protocol [13, 14].

Providing escrowed transfers is the main requirement for
ledgers to enable secure interledger payments.

All participants rely upon their ledgers to escrow funds
and release them only when a predefined condition is
met. The sender is assured by their ledger that their funds
are transferred only upon delivery of a non-repudiable

acknowledgement that the recipient has received their
payment. The recipient is assured by their ledger that
they will be paid when they provide such an acknowl-
edgement. Connectors also use their ledgers’ escrow to
protect themselves from risk.

Cryptographic signatures are a simple way for ledgers to
securely validate the outcome of the external conditions
upon which a transfer is escrowed. Any one-way func-
tion can be used [18]. Using asymmetric cryptography,
the ledger escrows funds pending the presentation of a
valid signature for a pre-defined public key and message
or hash. The ledger can then easily validate the signature
when it is presented and determine if the condition has
been met.

Figure 5: Transfer states

Figure 5 illustrates the states of a transfer. First, a trans-
fer is proposed to the participants, but no changes are
made to the ledger. Once affected account holders have
authorized the transfer, the ledger checks that funds are
available and that all of its rules and policies have been
satisfied. The ledger places the funds in escrow and the
transfer is prepared. If the execution condition e is ful-
filled, the transfer is executed. If any of the checks fail, or
if an abort condition e′ is fulfilled, the transfer is aborted
and the escrowed funds are returned to their originator.

3 Atomic Interledger Payments

Interledger payments consist of transfers on different
ledgers. If the payment partially executes, at least one
of the participants loses money. Thus, participants want
atomicity—a guarantee that all of the component trans-
fers will either execute or that all will be aborted.

Executing transfers atomically across multiple ledgers
requires a transaction commit protocol. The simplest
such protocol is the Two-Phase Commit, in which all
systems involved first indicate their readiness to com-
plete the transaction, and then execute or abort based on
whether all of the other systems have agreed. The ba-
sic form of that protocol uses a transaction manager to
collect the responses of the various system and dissem-
inate the decision. Fault tolerance can be added to the
Two-Phase Commit by replacing the single transaction

3

Figure 6: Payment chain

manager with a group of coordinators that use a consen-
sus algorithm to agree on the outcome of the payment
[14].

The Atomic execution mode uses a Byzantine fault-
tolerant agreement algorithm amongst an ad-hoc group
of coordinators or notaries to synchronize the execution
of the component transfers. Additionally, it guarantees
that the sender receive a cryptographically signed pay-
ment receipt from the recipient if funds are transferred.

Figure 6 shows a payment through a chain of participants
P and ledgers L. There are n participants in P, such that
|P| = n. The sender is the first participant p1 and the
recipient is the last participant pn. The connectors C are
participants p2 through pn−1, such that {pi ∈ C | C ⊂
P∧ i ∈ Z+ ∧ 1 < i < n}. The payment consists of n− 1
book transfers B on n− 1 ledgers, such that |B| = |L| =
n−1. The first participant, the sender p1, has an account
on ledger `1. The last participant, the recipient pn, has
an account on ledger `n−1. Each connector pi ∈ C has
accounts on ledgers `i−1 and `i and facilitates payments
between them.

3.1 Notaries

In the Atomic mode, transfers are coordinated by a group
of notaries N that serve as the source of truth regarding
the success or failure of the payment. They take the place
of the transaction manager in a basic Two-Phase Com-
mit. Importantly, notaries are organized in ad-hoc groups
for each payment and our protocol does not require one
globally trusted set of notaries.

All of the escrow conditions for the book transfers B
comprising the payment must depend on the notaries ei-
ther sending a D Execute or D Abort message. If the es-
crow conditions were based solely on a message from
N, however, faulty notaries could cause the transfers
to execute before the final transfer to the recipient is
L Prepared. [11].

Notaries N must only agree on the D Execute or D Abort
messages if they have received a signed receipt, the
R ReceiptSignature, from the recipient pn before a time-
out t. The recipient’s signature provides non-repudiable
proof that they have been paid. The recipient pn signs the
receipt once the transfer into their account is L Prepared
and escrowed pending their signature.

To ensure all of the transfers B can be executed atom-
ically, all of the execution conditions E must depend
on the D Execute message from the notaries and the
R ReceiptSignature from the recipient:

∀e ∈ E : e = R ReceiptSignature∧D Execute (1)

The abort conditions E ′ for each transfer in B are de-
pendent only on the abort message D Abort. Receipt of
a message fulfilling the abort condition e′i where {i ∈
Z+ ∧ i < n} causes the ledger `i to immediately tran-
sition the L Proposed or L Prepared transfer bi to the
L Aborted state and release the funds to the originator.

∀e′ ∈ E ′ : e′ = D Abort (2)

3.2 Fault Tolerance

The Atomic mode only guarantees atomicity when no-
taries N act honestly. Like all other participants, we as-
sume notaries are either rational or Byzantine. Rational
actors can be incentivized to participate with a fee.

Byzantine notaries, however, could sign both D Execute
and D Abort messages, communicate them to different
ledgers and cause some transfers to be executed and other
to be aborted. In order to protect against this, we must
set a fault-tolerance threshold f . This means that the out-
come of the agreement protocol will be correct so long
as there are no more than f Byzantine notaries in N.

4

If f = 0, we only need a single notary N = {N1} and the
D Execute and D Abort messages are simply signatures
by that notary N1.

If f ≥ 1, notaries use a Byzantine fault-tolerant (BFT)
agreement protocol. Using the method from [14, 16],
a BFT replication algorithm, such as PBFT [8] or Tan-
garoa, a BFT version of Raft [9], can be simplified into a
binary agreement protocol.

The minimum number of processes required to tolerate
f Byzantine faults is |N|= 3 f +1 as shown by [5].

The D Execute and D Abort messages are collections of
signatures from some representative subset Nrep such that
Nrep ⊆ N and |Nrep|= f +1 vouching for the outcome of
the agreement protocol.

3.3 Timeout

To ensure that funds cannot be held in escrow forever,
even in the case of failure, notaries N enforce a timeout
t. The recipient pn must submit the R ReceiptSignature
to the notaries N before t is reached, or the payment will
be aborted and the escrowed funds returned. t must be
sufficient to account for the duration of the phases of the
protocol leading up to Execution.

3.4 Phases of the Protocol

Before a payment can occur, the sender p1 must find a
suitable set of connectors C forming a path to the recip-
ient pn. Connectors have an interest in making their liq-
uidity information available in order to attract payment
flows. The problems of minimum-cost and multicom-
modity flow have been studied extensively in the context
of planning [1, 7, 20].

In the following, we assume that a path has already been
chosen and the exchange rates and any fees quoted by the
connectors in C are known.

Appendix A.1 illustrates the phases of the protocol, ex-
cluding Notary Selection and Notary Setup.

3.4.1 Notary Selection

Notaries are selected by the participants P.

For each candidate fault tolerance threshold fc where
fc ∈ Z+ ∧ fc < fmax and fmax is the sender’s maximum
fault tolerance threshold, the sender requests the set of all
notaries trusted at the given fault tolerance threshold fc

from each participant p, Np(fc) and calculates the can-
didate set Nc(fc) at threshold fc as the intersection of
these sets. Each p ∈ P chooses Np(fc) such that they be-
lieve that there is no Byzantine subset Nevil where Nevil ⊆
Np(fc), |Nevil |> f which will collude against them.

∀ fc ∈ Z+∧ fc < fmax : Nc(fc) =
⋂
p∈P

Np(fc) (3)

Finally the sender chooses a fault tolerance threshold f
and a corresponding set of notaries N such that N ⊆
Nc(f)∧ |N| ≥ 3 f + 1. If no such set exists, the sender
cannot rely on the Atomic mode and must instead use
the Universal mode as described in Section 4.

3.4.2 Proposal

In the proposal phase, the sender p1 notifies each connec-
tor {pi | i ∈ Z+∧1 < i < n} about the the book transfers
bi−1 and bi in the upcoming payment. Upon receiving
the proposal, each connector pi will verify the proposed
spread between the payments matches its exchange rate,
charge its fee and store the payment details. pi accepts
the terms of the book transfers bi−1 and bi and the sender
p1 proceeds to the next phase.

3.4.3 Preparation

Unlike in a basic Two-Phase Commit, book transfers
{bi ∈ B | i ∈ Z+ ∧ 1 < i < n} are prepared in sequence
from b1 to bn−1. Each connector is only willing to es-
crow their funds if they know funds have already been
escrowed for them.

The sender p1 first authorizes and sends the instruction to
prepare the first transfer b1 on `1. p1 then requests that
the first connector p2 prepare b2 on `2. The connector
p2 is comfortable preparing b2 because b1 is prepared
and the funds have been escrowed by `1. Similarly, each
connector pi prepares transfer bi once it is notified that
`i−1 has prepared bi−1 and escrowed the corresponding
funds.

3.4.4 Execution

Once the last book transfer bn−1 has been prepared and
the funds escrowed, the recipient pn must sign the re-
ceipt before the timeout t. pn is comfortable signing
the receipt because they know that doing so will fulfill
the condition of the escrowed funds waiting for them on
`n−1. pn submits the R ReceiptSignature to the notaries

5

N, who then run the agreement protocol (see Section 3.2)
to decide whether the payment should execute.

If N agree that the R ReceiptSignature was received in
time, they submit it and a signed D Execute message to
all participants P. Each participant {pi ∈ P | i∈Z+∧1 <
i ≤ n} submits the R ReceiptSignature and D Execute
message to `i−1 to execute bi−1 and claim the funds they
are due.

If N agree that the payment timed out, they submit the a
signed D Abort message to P. Each participant {p j ∈ P |
j ∈ Z+∧1 ≥ j < n} submits the D Abort message to ` j
and reclaims its escrowed funds.

3.5 Correctness

The Atomic mode of the protocol inherits the assump-
tions and level of fault-tolerance from the Byzantine
agreement protocol used amongst the notaries. For the
purpose of this section, we assume the notaries use PBFT
[8].

Given the assumptions in [8] we require no additional
assumptions.

3.5.1 Safety

Safety means that if one non-faulty ledger transitions
its transfer to the L Executed state, then no non-faulty
ledger will transition a transfer belonging to the same
payment to the L Aborted state and vice versa. If live-
ness also holds, all transfers will eventually be executed
or all aborted.

Given the safety of the consensus algorithm used by the
notaries, we know that all ledgers will only receive one
of either: f + 1 D Execute, or f + 1 D Abort messages
from notaries. A correct ledger only executes the transfer
when it has received f + 1 D Execute messages which
precludes the possibility that any other correct ledger
has aborted their transfer. Equally, a correct ledger only
aborts the transfer when it has received f + 1 D Abort
messages which precludes the possibility that any other
correct ledger has received f + 1 D Execute messages
and aborted their transfer.

3.5.2 Liveness

Liveness means that every non-faulty ledger connected
to at least one non-faulty, rational participant will even-
tually execute or abort its transfer.

As mentioned in Section 3.3, the notaries will initiate
their agreement protocol spontaneously after a timeout
t. From the liveness property of the underlying agree-
ment protocol, we know that the notaries will eventually
decide to either D Execute or D Abort and broadcast that
decision to the participants. Each ledger is connected to
at least two participants. If one of these participants is
non-faulty, it will forward the decision to the ledger.

Note that if notaries could broadcast directly to the
ledgers, our protocol could maintain liveness even when
all participants are faulty. However, in real world appli-
cations, some ledgers use proprietary protocols or private
networks, so we cannot rely on the fact that the notaries
can reach them directly.

If a transfer is in the L Prepared state, at least one of the
participants has an interest in seeing the transfer reach a
final state, because the escrowed funds would be trans-
ferred to them. If this participant is rational they will
therefore eventually forward the notaries’ decision. A
Byzantine participant in this position may not, but in do-
ing so does not hurt anyone else.

3.6 Fees

Each connector in C incurs some costs and risks for par-
ticipating in a payment, which can be priced into the con-
nectors’ fees.

When trading different assets, connectors in C effectively
write the sender p1 an American option [4, 6] which, on
exercise, swaps an asset on one ledger for an equivalent
asset on another ledger. In addition to the factors con-
sidered in standard option pricing, the connector should
also account for the following attack in its fee.

3.6.1 Liquidity Starvation

An attacker can attempt to temporarily tie up all of a con-
nector’s liquidity in payments it knows will fail. This at-
tack is rendered uneconomical if the connector sets its
fee to cover its costs and the profit it would expect if the
payment were successful. Furthermore, connectors, in-
cluding those operated by the same entity as a ledger,
can prevent their funds from being completely tied up by
escalating their fees as a function of the percentage of
their total liquidity being held in escrow.

6

4 Universal Interledger Payments

While the Atomic mode uses notaries to ensure proper
execution of a payment, the Universal mode relies on the
incentives of rational participants instead to eliminate the
need for external coordination. It provides safety and
liveness for all non-faulty participants connected to only
non-faulty ledgers, under an assumption of bounded syn-
chrony with a known bound. In Section 4.4.1 we discuss
the practical considerations of using Universal mode in a
system that does not guarantee bounded synchrony, e.g.
the Internet.

Appendix A.2 illustrates the phases of the payment in
this mode.

4.1 Execution Order

In Universal mode, there are no notaries. The book
transfers B must be executed in a specific order to en-
sure all participants’ incentives are aligned to execute
the payment properly and to ensure delivery of the
R ReceiptSignature to the sender p1.

The transfers B are escrowed only on the condition of
receiving the R ReceiptSignature:

∀e ∈ E : e = R ReceiptSignature (4)

Instead of having a global timeout, each book transfer
in {bi ∈ B | i ∈ Z+ ∧ i < n} has its own expiration time
enforced by the ledger `i. After the last book transfer
bn−1 is prepared, the recipient pn signs the receipt and
presents the R ReceiptSignature directly to their ledger
`n−1. If it is before the transfer’s expiration time tn−1,
bn−1 will be executed immediately.

Once bn−1 is executed and the recipient pn is paid,
connector pn−1 has a very strong incentive to pass the
R ReceiptSignature back to `n−2, as they have paid out
money but have not yet been paid. When each con-
nector {p j ∈ P | j ∈ Z+ ∧ 1 < j < n} learns of the
execution of the book transfer b j, they must get the
R ReceiptSignature from ` j and submit it to ` j−1 to claim
the money waiting in escrow for them.

Thus, the transfers in B are executed in “backwards” or-
der, from the recipient pn to the sender p1. Once the
first transfer b1 is executed, the sender p1 can get the
R ReceiptSignature from their ledger `1.

If the last transfer bn−1 times out before pn submits the
R ReceiptSignature, all transfers in B will expire and the
escrowed funds will be returned to their originator. The

following section discusses expiration times and the mes-
sage delay risk connectors must manage.

4.2 Message Delay

Each book transfer in B must have an expiration time t
to ensure liveness. In order for a connector {pi ∈ P | i ∈
Z+ ∧ 1 < i < n} to agree to take part in the payment,
they must be able to pass the R ReceiptSignature from
ledger `i to `i−1 and execute bi−1 before it expires. If
bi is executed but bi−1 expires, pi loses money. Because
bi may execute very close to its expiration time ti, the
expiration time ti−1 for transfer bi−1 must be greater than
that of bi by some finite time difference ti−1− ti.

This time difference ti−1− ti must account for the mes-
saging delays M(`i, pi) from `i to pi and M(pi, `i−1) from
pi to `i−1 (which includes the processing delays at pi, `i
and `i−1 respectively) and the clock skew K(`i−1, `i) be-
tween ledgers `i−1 and `i.

ti ≥ ti+1 +M(`i, pi+1)+M(pi+1, `i)+S(`i, `i+1) (5)

The timeout tn−1 for the destination transfer bn−1 is equal
to the timeout t in Atomic mode introduced in Section
3.3. That is, it is large enough to allow for the preparation
of the transfers and for the recipient to sign and submit
the R ReceiptSignature.

4.3 Correctness

For our analysis of Universal mode, we consider both
safety and liveness under bounded synchrony. We define
bounded synchrony similar to the definition given in [12]
as a system in which there is a known upper bound M on
messaging delays between processes and a known upper
bound S on clock skew between two nodes. We assume
that processing times are negligible and included in M.

4.3.1 Safety

Safety means that there will be no book transfer {bi ∈ B |
i ∈ Z+∧ i < n−1} which expires if bi+1 executed unless
`i, `i+1 or participant pi+1 are faulty.

Let bi+1 execute at time φ0. We know that bi+1 was not
expired, therefore:

φ0 < ti+1 (6)

7

A correct ledger `i+1 will send a message
〈M ExecuteNotify,R ReceiptSignature〉 to connec-
tor pi+1 which will arrive at time φ1:

φ1 ≤ φ0 +M(`i, pi+1) (7)

The rational connector pi+1 will send a message
〈M ExecuteRequest,R ReceiptSignature〉 to ledger `i
which will arrive at time φ2.

φ2 ≤ φ1 +M(pi+1, `i) (8)

The correct ledger `i is guaranteed to execute transfer
bi if and only if the message arrives before the timeout
ti. However, so far we have expressed all times in terms
of `i+1’s local clock. In order to ensure that bi is not
expired, we must account for clock skew:

ti ≥ φ2 +S(`i, `i+1) (9)

From equations (5), (6), (7), (8) and (9):

ti ≥ φ2 +S(`i, `i+1)

≥ φ1 +M(pi+1, `i)+S(`i, `i+1)

≥ φ0 +M(`i, pi+1)+M(pi+1, `i)+S(`i, `i+1)

≥ ti+1 +M(`i, pi+1)+M(pi+1, `i)+S(`i, `i+1)

(10)

Since `i is a correct ledger, it will execute the transfer. A
transfer that has been executed on a correct ledger cannot
expire, therefore bi cannot expire.

4.3.2 Liveness

Liveness means that eventually each book transfer {bi ∈
B | i ∈ Z+ ∧ i < n} on a non-faulty ledger `i must either
be L Executed or L Aborted.

All book transfers bi have a finite expiry time ti. A cor-
rect ledger `i will expire transfer bi at time ti unless it has
already executed.

Therefore after time ti, transfer bi will be either
L Executed or L Aborted.

4.4 Fault and Attack Mitigation

In Section 3.6 we discussed the connector fee in Atomic
mode. In Universal mode, there are additional costs that
the connector must take into account:

4.4.1 Optimal Timeouts

In an asynchronous system, message delays and clock
skew are unbounded, so a connector {pi ∈ P | i ∈
Z+ ∧ 1 < i < n} may lose the race to forward the
R ReceiptSignature from `i to `i−1, causing them to lose
money.

However, by observing prior performance of the net-
work, pi can estimate the probability Pr(ti−1 − ti ≥
M(`i, pi+1) + M(pi+1, `i) + S(`i, `i+1)), calculate the
value of the risk to them and include it in their fee.

As ti−1− ti becomes larger, the risk decreases. However,
the expiration time for each transfer {b j ∈ B | j ∈ Z+ ∧
j < i− 1} also increases. Longer expiration times incur
higher fees, because funds may be held in escrow for a
longer period. The sender p1 will try to choose ti−1− ti
such that the total amount of fees is minimized.

4.4.2 Robust Messaging

The other participants may collude in an attempt to de-
fraud a connector. In order to do so, they must interfere
with the messaging as mentioned in the previous section
to prevent the connector {pi ∈ P | i ∈ Z+ ∧ 1 < i < n}
from completing the transfer bi−1 thereby profiting at
pi’s expense.

The mitigation for this attack varies based on the techni-
cal characteristics of each ledger. However, in all cases,
it is a type of Denial of Service mitigation. Both connec-
tors and ledgers have an interest in establishing reliable
communication.

4.4.3 Receipt Privacy

The recipient pn does not have to transfer any money, but
we assume that the act of signing the receipt has some
external meaning, such as nullifying an existing asset of
the recipient (e.g. an invoice) or creating a new liability.

To claim the funds escrowed for them, the recipient pn
must submit R ReceiptSignature to `n−1 before the trans-
fer bn−1 is executed. In an asynchronous system, bn−1
might timeout while this message is in transit.

In order to guarantee safety for the recipient then, we
must introduce another property of ledgers, ReceiptPri-
vacy. A correct ledger that offers ReceiptPrivacy does
not disclose a 〈D Execute,R ReceiptSignature〉 message
(or the R ReceiptSignature contained therein) unless bi
is executed successfully.

8

If the recipient chooses an honest ledger with Re-
ceiptPrivacy, they are not at risk, even in an asyn-
chronous system, because their ledger `n−1 will disclose
R ReceiptSignature if and only if bn−1 executes.

5 Conclusion

We have proposed a protocol for secure interledger pay-
ments across an arbitrary chain of ledgers and connec-
tors. It uses ledger-provided escrow based on crypto-
graphic conditions to remove the need to trust the con-
nectors.

The Atomic mode of the protocol provides atomicity for
payment chains in which the participants can agree upon
a group of notaries. The Universal mode uses the in-
centives of rational actors to enable practical payments
between participants that do not all share trust in any in-
stitution or system.

Our protocol does not rely on any single system for
processing payments, so there is no limit to its scala-
bility. Payments can be as fast and cheap as the con-
stituent ledgers and connectors allow and transaction de-
tails are private to their participants. The separation of
concerns and the minimal standardization requirements
enable continuous optimization and competition between
connectors and between ledgers.

Removing the need to trust the connector enables any-
one with accounts on two or more ledgers to make con-
nections between them. Connectors can be composed to
make payments and the financial system more accessi-
ble, competitive and resilient. This enables the creation
of a global graph of liquidity or Interledger.

References

[1] AHUJA, R. K., MAGNANTI, T. L., AND ORLIN, J. B. Network
flows. Tech. rep., DTIC Document, 1988.

[2] AIYER, A. S., ALVISI, L., CLEMENT, A., DAHLIN, M., MAR-
TIN, J.-P., AND PORTH, C. Bar fault tolerance for cooperative
services. In ACM SIGOPS Operating Systems Review (2005),
vol. 39, ACM, pp. 45–58.

[3] ALBERT, R., JEONG, H., AND BARABÁSI, A.-L. Internet: Di-
ameter of the world-wide web. Nature 401, 6749 (1999), 130–
131.

[4] BLACK, F., AND SCHOLES, M. The pricing of options and cor-
porate liabilities. The journal of political economy (1973), 637–
654.

[5] BRACHA, G., AND TOUEG, S. Asynchronous consensus and
broadcast protocols. Journal of the ACM (JACM) 32, 4 (1985),
824–840.

[6] BRENNAN, M. J., AND SCHWARTZ, E. S. The valuation of
american put options. Journal of Finance (1977), 449–462.

[7] CAI, X., SHA, D., AND WONG, C. Time-varying minimum cost
flow problems. European Journal of Operational Research 131,
2 (2001), 352–374.

[8] CASTRO, M., LISKOV, B., ET AL. Practical byzantine fault tol-
erance. In OSDI (1999), vol. 99, pp. 173–186.

[9] COPELAND, C., AND ZHONG, H. Tangaroa: a byzantine fault
tolerant raft.

[10] DAVIES, D. W., AND PRICE, W. L. Security for computer net-
works: and introduction to data security in teleprocessing and
electronic funds transfer. John Wiley & Sons, Inc., 1989.

[11] DOLEV, D., AND STRONG, H. R. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing 12, 4 (1983),
656–666.

[12] DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in
the presence of partial synchrony. Journal of the ACM (JACM)
35, 2 (1988), 288–323.

[13] GRAY, J. Notes on data base operating systems. In Operat-
ing Systems, An Advanced Course (London, UK, UK, 1978),
Springer-Verlag, pp. 393–481.

[14] GRAY, J., AND LAMPORT, L. Consensus on transaction commit.
ACM Transactions on Database Systems (TODS) 31, 1 (2006),
133–160.

[15] MAZIÈRES, D. The stellar consensus protocol: A federated
model for internet-level consensus.

[16] MOHAN, C., STRONG, R., AND FINKELSTEIN, S. Method
for distributed transaction commit and recovery using byzantine
agreement within clusters of processors. In Proceedings of the
second annual ACM symposium on Principles of distributed com-
puting (1983), ACM, pp. 89–103.

[17] NAKAMOTO, S. Bitcoin: A Peer-to-Peer electronic cash system.

[18] ROMPEL, J. One-way functions are necessary and sufficient for
secure signatures. In Proceedings of the twenty-second annual
ACM symposium on Theory of computing (1990), ACM, pp. 387–
394.

[19] SCHWARTZ, D., YOUNGS, N., AND BRITTO, A. The ripple pro-
tocol consensus algorithm. Ripple Labs Inc White Paper (2014).

[20] WAGNER, H. M. On a class of capacitated transportation prob-
lems. Management Science 5, 3 (1959), 304–318.

[21] WATTS, D. J., AND STROGATZ, S. H. Collective dynamics of
small-worldnetworks. nature 393, 6684 (1998), 440–442.

9

A Appendix

A.1 Atomic Mode Sequence Diagram

Figure 7: Phases of a payment in the Atomic mode

10

A.2 Universal Mode Sequence Diagram

Figure 8: Phases of a payment in the Universal mode

11

A.3 Formal Specification: Atomic mode

module Atomic
Formal Specification in TLA+ of the Interledger Protocol Atomic (ILP/A)

Modeled after the excellent Raft specification by Diego Ongaro.

Available at https://github.com/ongardie/raft.tla

Copyright 2014 Diego Ongaro.

This work is licensed under the Creative Commons Attribution-4.0

International License https://creativecommons.org/licenses/by/4.0/

extends Naturals, Sequences, Bags, TLC

The set of ledger IDs

constants Ledger

The set of participant IDs

constants Participant

The notary

constants Notary

Sender states

constants S Ready , S Waiting , S Done

Notary states

constants N Waiting , N Committed , N Aborted

Ledger states

constants L Proposed , L Prepared , L Executed , L Aborted

Message types

constants PrepareRequest , ExecuteRequest , AbortRequest ,
PrepareNotify , ExecuteNotify , AbortNotify ,
SubmitReceiptRequest

Receipt signature

constants R ReceiptSignature

Global variables

A bag of records representing requests and responses sent from one process

to another

variable messages

Sender variables

State of the sender (S Ready, S Waiting, S Done)

variable senderState

All sender variables

senderVars
∆
= 〈senderState〉

The following variables are all per ledger (functions with domain Ledger)

The ledger state (L Proposed , L Prepared , L Executed or L Aborted)

variable ledgerState

12

All ledger variables

ledgerVars
∆
= 〈ledgerState〉

Notary variables

State of the notary (N Waiting, N Committed , N Aborted)

variable notaryState

All notary variables

notaryVars
∆
= 〈notaryState〉

All variables; used for stuttering (asserting state hasn’t changed)

vars
∆
= 〈messages, senderVars, ledgerVars, notaryVars〉

Helpers

Add a set of new messages in transit

Broadcast(m)
∆
= messages ′ = messages ⊕ SetToBag(m)

Add a message to the bag of messages

Send(m)
∆
= Broadcast({m})

Remove a message from the bag of messages. Used when a process is done

processing a message.

Discard(m)
∆
= messages ′ = messages 	 SetToBag({m})

Respond to a message by sending multiple messages

ReplyBroadcast(responses, request)
∆
=

messages ′ = messages 	 SetToBag({request})⊕ SetToBag(responses)

Combination of Send and Discard

Reply(response, request)
∆
=

ReplyBroadcast({response}, request)

Return the minimum value from a set, or undefined if the set is empty.

Min(s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≤ y

Return the maximum value from a set, or undefined if the set is empty.

Max (s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≥ y

Is a final ledger state

IsFinalLedgerState(i)
∆
= i ∈ {L Executed , L Aborted}

Sender

Sender
∆
= Min(Participant)

Recipient

Recipient
∆
= Max (Participant)

Set of connectors

Connector
∆
= Participant \ {Sender , Recipient}

Define type specification for all variables

TypeOK
∆
= ∧ IsABag(messages)
∧ senderState ∈ {S Ready , S Waiting , S Done}
∧ ledgerState ∈ [Ledger → {L Proposed , L Prepared , L Executed , L Aborted}]

13

Consistency
∆
=

∀ l1, l2 ∈ Ledger : ¬ ∧ ledgerState[l1] = L Aborted
∧ ledgerState[l2] = L Executed

Inv
∆
= ∧ TypeOK
∧ Consistency

Define initial values for all variables

InitSenderVars
∆
= ∧ senderState = S Ready

InitLedgerVars
∆
= ∧ ledgerState = [i ∈ Ledger 7→ L Proposed]

InitNotaryVars
∆
= ∧ notaryState = N Waiting

Init
∆
= ∧messages = EmptyBag
∧ InitSenderVars
∧ InitLedgerVars
∧ InitNotaryVars

Define state transitions

Participant i starts off the chain

Start(i)
∆
=

∧ senderState = S Ready
∧ senderState ′ = S Waiting
∧ Send([mtype 7→ PrepareRequest ,

msource 7→ i ,
mdest 7→ i + 1])

∧ unchanged 〈ledgerVars, notaryVars〉

Notary times out

NotaryTimeout
∆
=

∧ notaryState = N Waiting
∧ notaryState ′ = N Aborted
∧ Broadcast(

{[mtype 7→ AbortRequest ,
msource 7→ Notary ,
mdest 7→ k] : k ∈ Ledger})

∧ unchanged 〈senderVars, ledgerVars〉

Ledger spontaneously aborts

LedgerAbort(l)
∆
=

∧ ledgerState[l] = L Proposed
∧ ledgerState ′ = [ledgerState except ! [l] = L Aborted]
∧ Send([mtype 7→ AbortNotify ,

msource 7→ l ,
mdest 7→ l − 1])

∧ unchanged 〈senderVars, notaryVars〉

Message handlers

i = recipient, j = sender, m = message

Ledger i receives a Prepare request from process j

LedgerHandlePrepareRequest(i , j , m)
∆
=

14

let valid
∆
= ∧ ledgerState[i] = L Proposed
∧ j = i − 1

in ∨ ∧ valid
∧ ledgerState ′ = [ledgerState except ! [i] = L Prepared]
∧ Reply([mtype 7→ PrepareNotify ,

msource 7→ i ,
mdest 7→ i + 1], m)

∧ unchanged 〈senderVars, notaryVars〉
∨ ∧ ¬valid
∧Discard(m)
∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Ledger i receives an Execute request from process j

LedgerHandleExecuteRequest(i , j , m)
∆
=

let valid
∆
= ∧ ledgerState[i] = L Prepared
∧ j = Notary

in ∨ ∧ valid
∧ ledgerState ′ = [ledgerState except ! [i] = L Executed]
∧ Reply([mtype 7→ ExecuteNotify ,

msource 7→ i ,
mdest 7→ i − 1], m)

∧ unchanged 〈senderVars, notaryVars〉
∨ ∧ ¬valid
∧Discard(m)
∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Ledger i receives an Abort request from process j

LedgerHandleAbortRequest(i , j , m)
∆
=

let valid
∆
= ∧ ∨ ledgerState[i] = L Proposed

∨ ledgerState[i] = L Prepared
∧ j = Notary

in ∨ ∧ valid
∧ ledgerState ′ = [ledgerState except ! [i] = L Aborted]
∧ Reply([mtype 7→ AbortNotify ,

msource 7→ i ,
mdest 7→ i − 1], m)

∧ unchanged 〈senderVars, notaryVars〉
∨ ∧ ¬valid
∧Discard(m)
∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Ledger i receives a message

LedgerReceive(i , j , m)
∆
=

∨ ∧m.mtype = PrepareRequest
∧ LedgerHandlePrepareRequest(i , j , m)

∨ ∧m.mtype = ExecuteRequest
∧ LedgerHandleExecuteRequest(i , j , m)

∨ ∧m.mtype = AbortRequest
∧ LedgerHandleAbortRequest(i , j , m)

Ledger j notifies sender that the transfer is executed

SenderHandleExecuteNotify(i , j , m)
∆
=

∨ ∧ senderState = S Waiting
∧ senderState ′ = S Done
∧Discard(m)

15

∧ unchanged 〈ledgerVars, notaryVars〉
∨ ∧ senderState 6= S Waiting
∧Discard(m)
∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Ledger j notifies sender that the transfer is aborted

SenderHandleAbortNotify(i , j , m)
∆
=

let isSenderWaiting
∆
= ∨ senderState = S Waiting
∨ senderState = S Ready

in ∨ ∧ isSenderWaiting
∧ senderState ′ = S Done
∧Discard(m)
∧ unchanged 〈ledgerVars, notaryVars〉

∨ ∧ ¬isSenderWaiting
∧Discard(m)
∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Sender receives a message

SenderReceive(i , j , m)
∆
=

∨ ∧m.mtype = ExecuteNotify
∧ SenderHandleExecuteNotify(i , j , m)

∨ ∧m.mtype = AbortNotify
∧ SenderHandleAbortNotify(i , j , m)

Ledger j notifies recipient that the transfer is prepared

RecipientHandlePrepareNotify(i , j , m)
∆
=

∧ Reply([mtype 7→ SubmitReceiptRequest ,
msource 7→ i ,
mdest 7→ Notary ,
mreceipt 7→ R ReceiptSignature], m)

∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Recipient receives a message

RecipientReceive(i , j , m)
∆
=

∧m.mtype = PrepareNotify
∧ RecipientHandlePrepareNotify(i , j , m)

Ledger j notifies connector i that the transfer is prepared

ConnectorHandlePrepareNotify(i , j , m)
∆
=

∧ Reply([mtype 7→ PrepareRequest ,
msource 7→ i ,
mdest 7→ i + 1], m)

∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Ledger j notifies connector i that the transfer is executed

ConnectorHandleExecuteNotify(i , j , m)
∆
=

∧ Reply([mtype 7→ ExecuteRequest ,
msource 7→ i ,
mdest 7→ i − 1], m)

∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Ledger j notifies connector i that the transfer is aborted

ConnectorHandleAbortNotify(i , j , m)
∆
=

∧Discard(m)
∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Connector receives a message

16

ConnectorReceive(i , j , m)
∆
=

∨ ∧m.mtype = PrepareNotify
∧ ConnectorHandlePrepareNotify(i , j , m)

∨ ∧m.mtype = ExecuteNotify
∧ ConnectorHandleExecuteNotify(i , j , m)

∨ ∧m.mtype = AbortNotify
∧ ConnectorHandleAbortNotify(i , j , m)

Notary receives a signed receipt

NotaryHandleSubmitReceiptRequest(i , j , m)
∆
=

∨ ∧m.mreceipt = R ReceiptSignature
∧ notaryState = N Waiting
∧ notaryState ′ = N Committed
∧ ReplyBroadcast(
{[mtype 7→ ExecuteRequest ,
msource 7→ i ,
mdest 7→ k] : k ∈ Ledger}, m)

∧ unchanged 〈senderVars, ledgerVars〉
∨ ∧ notaryState 6= N Waiting
∧Discard(m)
∧ unchanged 〈senderVars, ledgerVars, notaryVars〉

Notary receives a message

NotaryReceive(i , j , m)
∆
=

∧m.mtype = SubmitReceiptRequest
∧NotaryHandleSubmitReceiptRequest(i , j , m)

Receive a message

Receive(m)
∆
=

let i
∆
= m.mdest

j
∆
= m.msource

in ∨ ∧ i ∈ Ledger
∧ LedgerReceive(i , j , m)

∨ ∧ i = Sender
∧ SenderReceive(i , j , m)

∨ ∧ i = Recipient
∧ RecipientReceive(i , j , m)

∨ ∧ i ∈ Connector
∧ ConnectorReceive(i , j , m)

∨ ∧ i = Notary
∧NotaryReceive(i , j , m)

End of message handlers

Defines how the variables may transition

Termination
∆
=

∧ ∀ l ∈ Ledger : IsFinalLedgerState(ledgerState[l])
∧ senderState = S Done
∧ unchanged vars

Next
∆
= ∨ Start(Sender)
∨NotaryTimeout
∨ ∃ l ∈ Ledger : LedgerAbort(l)
∨ ∃m ∈ domain messages : Receive(m)
∨ Termination

17

The specification must start with the initial state and transition according

to Next .

Spec
∆
= Init ∧2[Next]vars

18

A.4 Formal Specification: Universal mode

module Universal
Formal Specification in TLA+ of the Interledger Protocol Universal (ILP/U)

Modeled after the excellent Raft specification by Diego Ongaro.

Available at https://github.com/ongardie/raft.tla

Copyright 2014 Diego Ongaro.

This work is licensed under the Creative Commons Attribution-4.0

International License https://creativecommons.org/licenses/by/4.0/

extends Naturals, Sequences, FiniteSets, Bags, TLC

The set of ledger IDs

constants Ledger

The set of participant IDs

constants Participant

Sender states

constants S Ready , S ProposalWaiting , S Waiting , S Done

Connector states

constants C Ready , C Proposed

Ledger states

constants L Proposed , L Prepared , L Executed , L Aborted

Message types

constants PrepareRequest , ExecuteRequest , AbortRequest ,
PrepareNotify , ExecuteNotify , AbortNotify ,
SubpaymentProposalRequest , SubpaymentProposalResponse

Receipt signature

constants R ReceiptSignature

Global variables

Under synchrony we are allowed to have a global clock

variable clock

A bag of records representing requests and responses sent from one process

to another

variable messages

Sender variables

State of the sender (S Ready, S Waiting, S Done)

variable senderState

Whether the sender has received a response from a given connector

variable senderProposalResponses

All sender variables

senderVars
∆
= 〈senderState, senderProposalResponses〉

Connector variables

19

State of the connector (C Ready, C Proposed)

variable connectorState

All sender variables

connectorVars
∆
= 〈connectorState〉

The following variables are all per ledger (functions with domain Ledger)

The ledger state (L Proposed , L Prepared , L Executed or L Aborted)

variable ledgerState

The timeouts for each of the the transfers

variable ledgerExpiration

All ledger variables

ledgerVars
∆
= 〈ledgerState, ledgerExpiration〉

All variables; used for stuttering (asserting state hasn’t changed)

vars
∆
= 〈clock , messages, senderVars, connectorVars, ledgerVars〉

Helpers

Add a set of new messages in transit

Broadcast(m)
∆
= messages ′ = messages ⊕ SetToBag(m)

Add a message to the bag of messages

Send(m)
∆
= Broadcast({m})

Remove a message from the bag of messages. Used when a process is done

processing a message.

Discard(m)
∆
= messages ′ = messages 	 SetToBag({m})

Respond to a message by sending multiple messages

ReplyBroadcast(responses, request)
∆
=

messages ′ = messages 	 SetToBag({request})⊕ SetToBag(responses)

Combination of Send and Discard

Reply(response, request)
∆
=

ReplyBroadcast({response}, request)

Return the minimum value from a set, or undefined if the set is empty.

Min(s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≤ y

Return the maximum value from a set, or undefined if the set is empty.

Max (s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≥ y

Is a final ledger state

IsFinalLedgerState(i)
∆
= i ∈ {L Executed , L Aborted}

Sender

Sender
∆
= Min(Participant)

Recipient

Recipient
∆
= Max (Participant)

Set of connectors

Connector
∆
= Participant \ {Sender , Recipient}

20

The clock value we expect to be at after the proposal phase

ClockAfterProposal
∆
= 2 ∗ Cardinality(Connector) + 2

The clock value we expect after the preparation phase

ClockAfterPrepare
∆
= ClockAfterProposal + 2 ∗ Cardinality(Ledger) + 1

The clock value we expect to be at after the execution phase

ClockAfterExecution
∆
= ClockAfterPrepare + 2 ∗ Cardinality(Ledger) + 1

Define type specification for all variables

TypeOK
∆
= ∧ clock ∈ Nat
∧ IsABag(messages)
∧ senderState ∈ {S Ready , S ProposalWaiting , S Waiting , S Done}
∧ senderProposalResponses ∈ [Connector → boolean]
∧ connectorState ∈ [Connector → {C Ready , C Proposed}]
∧ ledgerState ∈ [Ledger → {L Proposed , L Prepared , L Executed , L Aborted}]
∧ ledgerExpiration ∈ [Ledger → Nat]

Consistency
∆
=

∀ l1, l2 ∈ Ledger : ¬ ∧ ledgerState[l1] = L Aborted
∧ ledgerState[l2] = L Executed

Inv
∆
= ∧ TypeOK
∧ Consistency

Define initial values for all variables

InitSenderVars
∆
= ∧ senderState = S Ready
∧ senderProposalResponses = [i ∈ Connector 7→ false]

InitConnectorVars
∆
= connectorState = [i ∈ Connector 7→ C Ready]

InitLedgerVars
∆
= ∧ ledgerState = [i ∈ Ledger 7→ L Proposed]
∧ ledgerExpiration = [i ∈ Ledger 7→ ClockAfterExecution − i]

Init
∆
= ∧ clock = 0
∧messages = EmptyBag
∧ InitSenderVars
∧ InitConnectorVars
∧ InitLedgerVars

Define state transitions

Participant i proposes all the subpayments

StartProposalPhase(i)
∆
=

∧ senderState = S Ready
∧ senderState ′ = S ProposalWaiting
∧ Broadcast({[

mtype 7→ SubpaymentProposalRequest ,
msource 7→ i ,
mdest 7→ k

] : k ∈ Connector})
∧ unchanged 〈ledgerVars, connectorVars, senderProposalResponses〉

Participant i starts off the preparation chain

21

StartPreparationPhase(i)
∆
=

∧ senderState = S ProposalWaiting
∧ ∃ p ∈ domain senderProposalResponses : senderProposalResponses[p]
∧ senderState ′ = S Waiting
∧ Send([mtype 7→ PrepareRequest ,

msource 7→ i ,
mdest 7→ i + 1])

∧ unchanged 〈ledgerVars, connectorVars, senderProposalResponses〉

Ledger spontaneously aborts

LedgerAbort(l)
∆
=

∧ ledgerState[l] = L Proposed
∧ ledgerState ′ = [ledgerState except ! [l] = L Aborted]
∧ Send([mtype 7→ AbortNotify ,

msource 7→ l ,
mdest 7→ l − 1])

∧ unchanged 〈senderVars, connectorVars, ledgerExpiration〉

Transfer times out

LedgerTimeout(l)
∆
=

∧ ¬IsFinalLedgerState(ledgerState[l])
∧ ledgerExpiration[l] ≤ clock
∧ ledgerState ′ = [ledgerState except ! [l] = L Aborted]
∧ Send([mtype 7→ AbortNotify ,

msource 7→ l ,
mdest 7→ l − 1])

∧ unchanged 〈senderVars, connectorVars, ledgerExpiration〉

If no messages are in flight and the sender isn’t doing anything, advance the

clock

NothingHappens
∆
=

∧ clock ≤ Max ({ledgerExpiration[x] : x ∈ Ledger})
∧ BagCardinality(messages) = 0
∧ senderState 6= S Ready
∧ ∨ senderState 6= S ProposalWaiting
∨ ∀ p ∈ domain senderProposalResponses : ¬senderProposalResponses[p]

∧ unchanged 〈messages, senderVars, connectorVars, ledgerVars〉

Message handlers

i = recipient, j = sender, m = message

Ledger i receives a Prepare request from participant j

LedgerHandlePrepareRequest(i , j , m)
∆
=

let valid
∆
= ∧ ledgerState[i] = L Proposed
∧ j = i − 1

in ∨ ∧ valid
∧ i ∈ Ledger
∧ ledgerState ′ = [ledgerState except ! [i] = L Prepared]
∧ Reply([mtype 7→ PrepareNotify ,

msource 7→ i ,
mdest 7→ i + 1], m)

∧ unchanged 〈senderVars, connectorVars, ledgerExpiration〉
∨ ∧ ¬valid
∧ i ∈ Ledger
∧Discard(m)

22

∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Ledger i receives an Execute request from process j

LedgerHandleExecuteRequest(i , j , m)
∆
=

let valid
∆
= ∧ ledgerState[i] = L Prepared
∧ ledgerExpiration[i] > clock
∧m.mreceipt = R ReceiptSignature

in ∨ ∧ valid
∧ ledgerState ′ = [ledgerState except ! [i] = L Executed]
∧ Reply([mtype 7→ ExecuteNotify ,

msource 7→ i ,
mdest 7→ i − 1,
mreceipt 7→ m.mreceipt], m)

∧ unchanged 〈senderVars, connectorVars, ledgerExpiration〉
∨ ∧ ¬valid
∧Discard(m)
∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Ledger i receives a message

LedgerReceive(i , j , m)
∆
=

∨ ∧m.mtype = PrepareRequest
∧ LedgerHandlePrepareRequest(i , j , m)

∨ ∧m.mtype = ExecuteRequest
∧ LedgerHandleExecuteRequest(i , j , m)

Sender receives a SubpaymentProposal request

SenderHandleSubpaymentProposalResponse(i , j , m)
∆
=

∧ i = Sender
∧ senderProposalResponses ′ = [senderProposalResponses except ! [j] = true]
∧Discard(m)
∧ unchanged 〈connectorVars, ledgerVars, senderState〉

Ledger j notifies sender that the transfer is executed

SenderHandleExecuteNotify(i , j , m)
∆
=

∨ ∧ senderState = S Waiting
∧ senderState ′ = S Done
∧Discard(m)
∧ unchanged 〈ledgerVars, connectorVars, senderProposalResponses〉

∨ ∧ senderState 6= S Waiting
∧Discard(m)
∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Ledger j notifies sender that the transfer is aborted

SenderHandleAbortNotify(i , j , m)
∆
=

let isSenderWaiting
∆
= senderState ∈ {S ProposalWaiting , S Waiting , S Ready}

in ∨ ∧ isSenderWaiting
∧ senderState ′ = S Done
∧Discard(m)
∧ unchanged 〈ledgerVars, connectorVars, senderProposalResponses〉

∨ ∧ ¬isSenderWaiting
∧Discard(m)
∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Sender receives a message

SenderReceive(i , j , m)
∆
=

∨ ∧m.mtype = SubpaymentProposalResponse

23

∧ SenderHandleSubpaymentProposalResponse(i , j , m)
∨ ∧m.mtype = ExecuteNotify
∧ SenderHandleExecuteNotify(i , j , m)

∨ ∧m.mtype = AbortNotify
∧ SenderHandleAbortNotify(i , j , m)

Ledger j notifies recipient that the transfer is prepared

RecipientHandlePrepareNotify(i , j , m)
∆
=

∨ ∧ Reply([mtype 7→ ExecuteRequest ,
msource 7→ i ,
mdest 7→ i − 1,
mreceipt 7→ R ReceiptSignature], m)

∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Recipient receives a message

RecipientReceive(i , j , m)
∆
=

∨ ∧m.mtype = PrepareNotify
∧ RecipientHandlePrepareNotify(i , j , m)

Connector i receives a SubpaymentProposal request

ConnectorHandleSubpaymentProposalRequest(i , j , m)
∆
=

∧ connectorState ′ = [connectorState except ! [i] = C Proposed]
∧ Reply([mtype 7→ SubpaymentProposalResponse,

msource 7→ i ,
mdest 7→ j], m)

∧ unchanged 〈senderVars, ledgerVars〉

Ledger j notifies connector i that the transfer is prepared

ConnectorHandlePrepareNotify(i , j , m)
∆
=

∨ ∧ Reply([mtype 7→ PrepareRequest ,
msource 7→ i ,
mdest 7→ i + 1], m)

∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Ledger j notifies connector i that the transfer is executed

ConnectorHandleExecuteNotify(i , j , m)
∆
=

∧ Reply([mtype 7→ ExecuteRequest ,
msource 7→ i ,
mdest 7→ i − 1,
mreceipt 7→ m.mreceipt], m)

∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Ledger j notifies connector i that the transfer is aborted

ConnectorHandleAbortNotify(i , j , m)
∆
=

∧Discard(m)
∧ unchanged 〈senderVars, connectorVars, ledgerVars〉

Connector receives a message

ConnectorReceive(i , j , m)
∆
=

∨ ∧m.mtype = SubpaymentProposalRequest
∧ ConnectorHandleSubpaymentProposalRequest(i , j , m)

∨ ∧m.mtype = PrepareNotify
∧ ConnectorHandlePrepareNotify(i , j , m)

∨ ∧m.mtype = ExecuteNotify
∧ ConnectorHandleExecuteNotify(i , j , m)

∨ ∧m.mtype = AbortNotify

24

∧ ConnectorHandleAbortNotify(i , j , m)

Receive a message

Receive(m)
∆
=

let i
∆
= m.mdest

j
∆
= m.msource

in ∨ ∧ i ∈ Ledger
∧ LedgerReceive(i , j , m)

∨ ∧ i = Sender
∧ SenderReceive(i , j , m)

∨ ∧ i = Recipient
∧ RecipientReceive(i , j , m)

∨ ∧ i ∈ Connector
∧ ConnectorReceive(i , j , m)

End of message handlers

Defines how the variables may transition

Termination
∆
=

∧ ∀ l ∈ Ledger : IsFinalLedgerState(ledgerState[l])
∧ senderState = S Done
∧ unchanged vars

Next
∆
= ∨ ∧ ∨ StartProposalPhase(Sender)

∨ StartPreparationPhase(Sender)
∨ ∃ l ∈ Ledger : LedgerAbort(l)
∨ ∃ l ∈ Ledger : LedgerTimeout(l)
∨ ∃m ∈ domain messages : Receive(m)
∨NothingHappens

∧ clock ′ = clock + 1
∨ Termination

The specification must start with the initial state and transition according

to Next .

Spec
∆
= Init ∧2[Next]vars

25

